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Executive Summary 

The Federal Railroad Administration (FRA) sponsored a research team from Aurora Flight 
Sciences to develop the External Perception for Locomotives (ExP-L) system, which uses the 
FRA Cab Technology Integration Lab (CTIL) to demonstrate prototype object operator 
augmentation. The system can detect and localize objects of interest in and around the track, 
interpret the state of the detected objects to determine if there is any urgent and actionable 
information, and communicate this information to the operator. The research team selected four 
objective demonstrations to show the value of ExP-L, including 1) alerting the operator of a track 
obstruction by vehicles, 2) alerting the operator of potential signal violations, 3) alerting the 
operator of nonfunctional grade crossings, and 4) maintaining awareness of locomotive location 
through visual recognition of signs. 
The team held three progressive ExP-L demonstrations. Demo I showcased the system’s ability to 
detect and classify objects of interest in and around the track. The system detected cars, signals, 
railroad crossings, station signs, mile markers, and 2-mile warnings. Demo II incorporated state 
interpretation of the detected objects, including determining if a car was on the tracks, 
establishing the color of signals, reading station signs and mile markers, and evaluating if a 
railroad crossing was functioning properly. Demo III concluded this phase of development by 
integrating a heads-up display to communicate urgent and actionable information. 
To detect objects of interest, the team developed an object detection algorithm to recognize 
important signs, signals, and objects (SSOs)1 in the path of a moving train. Using a deep neural 
network (DNN) trained on 103,067 objects in 30,740 images, the algorithm achieved 71 percent 
per-frame accuracy while running near real-time at 10 frames per second in the CTIL. This 
accuracy is very promising considering two facts. First, most SSOs will be present in video for 
anywhere between 40 and 100 frames. Thus, 71 percent accuracy can be expected to correctly 
detect the object 29 to 71 times before it has passed. Second, this performance approaches state-
of-the-art accuracy of algorithms trained on many hundreds of thousands of images. For 
example, the current top-performing, real-time object detector on the Microsoft COCO dataset 
(with over 330,000 images) achieves 78.5 percent accuracy. The research team’s highest current 
accuracy levels using only 30,740 annotated images over 8 separate classes suggested that great 
improvements can be made by training on more images. 
The team developed several more traditional computer vision techniques to interpret the state of 
these objects and determine if they represent an urgent and actionable response. These state 
interpretation algorithms include 1) evaluating if a car is on the tracks, 2) identifying signal 
colors, 3) reading station signs and mile markers, and 4) determining if a railroad crossing is 
operating correctly. Each of these traditional computer vision algorithms achieved greater than 
90 percent accuracy, with most achieving 95 percent or greater when tested on a labeled ground 
truth data set. Researchers determined that incorrect state interpretations were reported due to 
erroneous results from the detection algorithm and were not a failure of the interpretation 
algorithm itself. 
Object states that denote an urgent and actionable response from the operator are communicated 
using the CTIL’s existing head-up display capabilities through easy-to-understand messages that 

 
1 Not to be confused with the term stop signal overruns (SSO) used in railroad operations. 
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appear on the engineer’s “window.” These situations include track authority violations, cars 
located on the tracks, and broken railroad crossings. The system will also use relevant CTIL 
webservice data to continuously display the name of the arriving station and the following station 
to help orient the operator. 
The approach and lessons learned from this program can be leveraged to transition the system for 
use in an operational locomotive. The existing CTIL-based system also can be used for human 
factors research to refine the human/machine interface to a point where it is most useful for 
engineers and conductors. Studies evaluating such factors as whether operators find showing the 
next station to be helpful and other human factors-centric research can be conducted to help 
define and improve the requirements of the vision system for an operational locomotive. 
This research was conducted to prove the capabilities of a vision-based operator augmentation 
system for locomotives. Further research can be conducted into integrating this type of system for 
an operational train in unconstrained outdoor environments. The research team believes that this 
phase of ExP-L represents an important first step toward perceptual enhancements in the cab to 
improve safety on our nations’ railways. 
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1. Introduction 

External Perception for Locomotives (ExP-L) uses deep learning to detect and identify objects 
external to a train and informs the operator of relevant information. Like adaptive cruise control 
in modern cars, the system helps the operator to actively monitor the environment, helping to 
fight distraction and fatigue while detecting potential obstructions and determining the best 
course of action. 
To demonstrate the value of the system, the Federal Railroad Administration (FRA) sponsored a 
research team from Aurora Flight Sciences to develop a proof of concept system functioning in a 
simulated environment. The team used the Cab Technology Integration Lab (CTIL) at the Volpe 
National Transportation Systems Center for development and testing, as it is a comprehensive 
locomotive simulator that can depict a variety of environmental conditions and real-world 
situations. The low overhead required for operation, data collection, and testing makes the CTIL 
an ideal environment for proof of concept work. 
The team trained a deep neural net to detect signs, signals, and objects in the CTIL simulation. 
The algorithm can detect cars, railroad crossings, station signs, mile markers, multiple types of 
signals, and split tracks. Additional computer vision techniques interpret the state of these 
objects. This information is used to inform the operator of potential objects on the track, track 
authority violations, signal drops, and other useful information using a head-up display (HUD) 
integrated into the CTIL. MIT’s Human Systems Lab aided in designing the prototype human-
machine interface (HMI) and provided the rail expertise necessary to establish the appropriate 
context for the work. 
The key advancement of ExP-L beyond other similar train-based control systems such as 
Positive Train Control (PTC)2 is twofold. First, ExP-L requires no infrastructure development 
between trains, since it relies only on sensors placed directly on the train engine. Second, it adds 
noncooperative capabilities to train situational awareness. This is most important in especially 
dangerous situations such as cars or pedestrians on the tracks or malfunctioned railroad crossing 
structures or track splits. Just as a car’s cruise control is used to help the driver guide it safely to 
its destination, ExP-L provides vital supplemental information to train conductors and engineers 
to augment their operating experience. 

1.1 Background 
In August 2014, the collision of two Union Pacific trains in Hoxie, Arkansas, resulted in two 
deaths and over $5 million in damage. The root cause of this accident was a fatigued engineer 
who missed all three wayside signals instructing him to slow down, stop, and wait for the second 
train to move onto the adjacent track before proceeding. Similar accidents, classified as signal 
violations, often occur in both freight and shortline railroads across the U.S. FRA estimates that 
signal violations result in over 40 accidents per year, resulting in several deaths and millions of 
dollars in damage.3 Rail conductors and engineers, especially extra board crews, often work 

 
2 Peters, J., and Frittelli, J. Positive Train Control (PTC): Overview and Policy Issues. Congressional Research 
Service Report for Congress. 30 July 2012. 
3 FRA Accident Database, Train Accidents By Type and Major Cause. 
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long, irregular shifts on short notice and travel long stretches of track with minimal changes in 
scenery, possibly causing them to experience fatigue and loss of situational awareness. 
The ExP-L system uses machine vision and deep learning techniques to automatically detect and 
interpret railway signs, signals, and objects, and alert engineers and conductors about actionable 
information. ExP-L has the potential to help engineers and conductors maintain situational 
awareness, and to prevent deadly accidents such as occurred in Hoxie. This system also can be 
used in human factors research exploring the interaction between humans and autonomy. 

1.2 Objectives 
The research team sought to demonstrate how the ExP-L system uses a vision-based deep 
learning approach to help train operators improve safety by detecting and interpreting signs, 
signals, and objects (SSOs)4 and alerting the operator to relevant information in a useful way. 

1.3 Overall Approach 
The ExP-L study was conducted in three phases, each comprised of three demonstrations. Phase 
I consisted of systems engineering and architecture selection as well as several trade studies to 
establish the feasibility of using deep learning for ExP-L. During this phase, researchers focused 
on defining system requirements and selecting the software architecture that would perform best 
for this application. During Phase II, researchers developed the software architecture to detect 
and classify signs, signals, and objects and interpret those objects in useful demonstration 
scenarios. Phase III focused on developing a prototype HMI to communicate that information to 
the operator. As the system matured, each milestone culminated in a demonstration, as described 
in Figure 1. 

 
Figure 1. Development Approach 

1.4 Scope 
This report details the ExP-L system at the conclusion of Phase III. It discusses the technical 
work completed to develop the technology, the current performance of the system, and the next 
steps needed to progress the technology toward a real-world application. 

 
4 Not to be confused with the term stop signal overruns (SSO) used in railroad operations. 
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1.5 Organization of the Report 
Section 2 describes the ExP-L systems engineering. Section 3 provides details on the 
development of the algorithm for object detection. Section 4 describes the interpretation 
algorithms. Section 5 describes development of the HMI prototype. Section 6 discusses 
limitations of the simulation and the design. Section 7 presents possible next steps, and Section 8 
presents the conclusions from this research.  

Appendices A through G provide supplemental information related to this research.
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2. Systems Engineering 

2.1 System Objectives 
This research comprised three separate milestones, represented as technology demonstrations, 
which build from each prior milestone’s achievement in system design and functionality, 
representing a logical system development path. The research team developed the ExP-L system 
to: 

1. Detect and localize objects of interest in and around the track, including cars, circular 
signals, elliptical signals, track splits, railroad crossings, station signs, mile markers, and 
2-mile warnings 

2. Interpret the state of the detected objects to determine if there is any urgent and 
actionable information 

3. Communicate urgent and actionable information to the operator 
Researchers outlined a set of seven objects for which the ExP-L system was required to detect, 
interpret, and communicate urgent and actionable information to achieve the four objectives 
discussed in Table 1 and Section 2.2. The team chose a deep neural net as the best approach to 
detect the seven objects. To interpret the objects, a variety of traditional computer vision 
techniques were evaluated and used. To communicate urgent and actionable information, 
researchers used CTIL’s existing HUD functionality. A summary of the required objects of 
interest, the required interpretation, and an example output is shown in Table 1, which references 
the objectives listed in Section 2.2. 

Table 1. ExP-L Required Objects of Interest 
Object Interpretation Example Communication Objective 
Cars On/Off Track “CAR ON TRACK” Objective 1 
Circular Signals Color “REDUCE SPEED, PREPARE TO STOP” Objective 2 
Elliptical Signals Color “REDUCE SPEED, PREPARE TO STOP” Objective 2 
Railroad Crossing Up/Down “CROSSING NOT FUNCTIONING” Objective 3 
Station Signs Text “Arriving: HOLLYWOOD” Objective 4 
Mile Markers Text “16” Objective 4 
2-Mile Marker N/A “2-MILE WARNING” Objective 4 

To design a system that meets these requirements, the team performed a trade study of existing 
deep neural network architectures and selected YOLOv3 as the best candidate. Researchers 
examined the requirements needed to closely integrate with the CTIL environment and its web 
service, defined the overall architecture, and selected the required hardware. 

2.2 Objective Demonstrations 
ExP-L was designed to use CTIL to demonstrate the capabilities of a vision-based deep learning 
approach to aiding the operator by detecting, classifying, and interpreting SSOs and alerting the 
operator to relevant information in a useful way. To demonstrate the end use of this technology, 
a subset of potential vision-based scenarios requiring an engineer’s alertness and intervention 
were selected: 
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Objective 1: Alert the operator of track obstructions by vehicles 
Track obstruction is a common cause of accidents, resulting in enormous costs and potential loss 
of life. A system that can alert the operator to obstructions early enough for them to react would 
significantly reduce these accidents. Because the CTIL does not render images far enough out to 
fulfill this requirement, vehicles are detected as soon as they are visually distinct. 
Objective 2: Alert the operator of potential signal violations 
FRA estimates that signal violations cause over 40 accidents per year, resulting in several deaths 
and millions of dollars in damage.5 PTC is a “cooperative” system that aims to solve this 
problem, relying on other trains and infrastructure (e.g., signs and signals) to continuously report 
their state so the system can understand if a locomotive is operating in violation of safety 
procedures. ExP-L solves this problem independent of infrastructure, allowing for 
implementation anywhere, regardless of infrastructure. 

Objective 3: Alert the operator of potential maintenance issues on the track 
Locomotive operators are instructed to inform dispatch of various maintenance-related issues in 
and around the track; however, these issues are often missed or go unreported. ExP-L can 
automatically report such occurrences using the existing perception system. Improperly 
functioning railroad crossings were selected as the representative case for this objective because 
CTIL renders crossings in both the up and down position. 

Objective 4: Maintain awareness of location by reading signs and mile markers 
Operators rely largely on memorizing the section of track on which they operate to understand 
their location and anticipate terrain changes, signals, and stations. ExP-L’s perception-based 
interpretation of location adds another layer of awareness to the train location and state by 
reporting station signs. 
To do so, many separate hardware, software, algorithmic development, and implementation 
items must be considered. For ExP-L to succeed, the system needs to seamlessly integrate into 
the CTIL data stream, both visually and by using available locomotive state data. This 
information would be processed though the ExP-L software system detecting objects such as 
cars, signal crossings, station signs, mile markers, and signals. This track state information, 
accompanied by situational awareness information, would output a range of detections, 
warnings, or advisory information for the locomotive engineer. 

2.3 Deep Neural Network Architecture Trade Study 
Deep learning was chosen as the main abstract method of enabling ExP-L to effectively and 
efficiently detect all objects required by the program though visual data. Figure 2 provides an 
example of the type of visual data objects. Deep learning has been used by virtually all self-
driving car companies to detect, interpret, and classify objects from image sensor data, which 
makes a strong case for its use in ExP-L. Among the current most effective object detectors are 

 
5 FRA Accident Database, Train Accidents By Type and Major Cause. 
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YOLOv36, RetinaNet7, and Faster RCNN.8 After an extensive trade study comparing these three 
deep learning architectures (see Appendix A), researchers decided that YOLOv3 would be best-
suited for ExP-L due to its high accuracy, generalizable training procedure, and near-real-time 
speed potential. The team implemented YOLOv3 in the Python programming language using the 
Keras package, which allowed more control over the training and testing aspects of development. 
The designing and training of the YOLOv3 implementation is discussed in this section. 

 
Figure 2. Applying Deep Learning to ExP-L 

2.4 CTIL Requirements 
CTIL has few requirements for interfacing. There are three main components that would require 
access for ExP-L. The first component is the CTIL video output to the engineer’s main screen, 
which contains all visual information relating to the current scene. This is what the locomotive 
engineer sees when looking forward. To grab this image information, an HDMI splitter is 
required to split the image from the CTIL processor into a computer so the CTIL image can 
remain running unhindered. This split HDMI signal feeds into an HDMI capture card which acts 
as the video input device to the computer. 
The second component is access to the CTIL’s web service to capture data relevant to the state of 
the locomotive (e.g., speed, acceleration, state of hand controls, etc.). The CTIL runs on a 
separate internal network to pass information around the control console and locomotive console. 
The team needed the ability to join this network and retrieve webservice data over the wireless 
network and gather information using the web address API call to capture data. 
Lastly, the CTIL needed to accept any information ExP-L wishes to pass on to the engineer. For 
example, ExP-L will warn engineers if they are approaching a signal indicating a limited 
approach section of track if they have not begun to reduce speed. ExP-L might warn the engineer 

 
6 Redmon, P., Farhadi, A. 2018. YOLOv3: An Incremental Improvement. Tech Report. 
7 Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P. 2017. Focal Loss for Dense Object Detection. IEEE 
International Conference on Computer Vision. 
8 Ren, S., He, K., Girshick, R., Sun, J. 2015. Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks. Tech Report. 
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if a car is on the track ahead, or if grade crossing gates are broken and not lowered. This is done 
by way of a HUD image overlay on the engineer’s main screen. Images to be displayed on this 
HUD require a RGB pure blue background (0, 0, 255) with images on top of the blue 
background. This image information is then fed into a video mixer where the blue is stripped out 
and the remaining images are overlaid onto the engineer’s forward perspective display. The 
resolution of this input is 1920x1080 and fed via HDMI video connection. 

2.5 CTIL Web Service 
Access to the CTIL data stream is established by a web service running on HTTP 1.1, connecting 
via port 80. A data retrieval request is formatted by a specific web URL which returns the 
requested information. Any computer connected to the CTIL’s network, either over wifi or 
Ethernet, has access to this data stream. The core URL request is: http://192.168.0.2/data.csv 
This core request is augmented with the specific parameters being asked of the web service. The 
request is formatted using the standard URL parameter syntax, “?” to start the parameter list and 
“&” to separate parameters. Below is a list of the parameters: 

• “v” – This required parameter allows the user to specify simulator variables to be 
received. Multiple variables can be listed, separated with commas. Any specified 
parameters that do not exist will be ignored. 

• “r” – This optional parameter specifies the data rate (in hertz) with which the web service 
will respond. Its range is 1 to 20 Hz. If left unspecified, the default rate will be 20 Hz. 

• “n” – This optional parameter specifies the number of responses with which the data 
stream will respond. If left unspecified, the web service will default to n = 1, returning 
only one result. 

• “format=-h” – This is used to specify a data return without a header row. 

• “:|” – Optionally specify delimiter type. In this example, the “|” delimiter is used. If left 
unspecified, the default value is a “,” (comma). An “&” is not required to separate this 
variable but does need to be the final parameter specified. For example, to collect 
information on the throttle and dynamic brake handle at 5 Hz for 20 seconds without a 
header row, a “,” would be used as the delimiter. The web URL request would be: 
http://192.168.0.2/data.csv?v=thtld,dbhld&n=100&r=5&format=-h:, 

The URL library tool can be used to programmatically retrieve data via this web service, which 
transfers the data with the URL syntax. A user can request this data over the web service at any 
time to obtain the current state information about the CTIL. 

2.6 Architecture Selection 
ExP-L consists of both hardware and software implementations to produce the desired output. 
Many of these component selections were chosen based on a down select of commercial and 
academically available hardware and software components. Prior trade studies for a deep 
learning architecture can be found in Appendix A; computer and image capture trade studies can 
be found in Appendix C. The final architecture is discussed here. 
This system takes in an image from the CTIL via an HDMI splitter so the CTIL can continue to 
function normally. At the same time, ExP-L is able to process the image, obtain web service data 

http://192.168.0.2/data.csv
http://192.168.0.2/data.csv?v=thtld%2Cdbhld&amp;n=100&amp;r=5&amp;format=-h
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over the CTIL network, and determine if a car is on the tracks, the locomotive is in a signal 
violation, or if a crossing signal is broken. This information is then fed back to the CTIL via a 
HUD on the engineer’s forward perspective display. See Figure 3 for an overview of the system 
flow.  

 
Figure 3. System Flow Diagram 

1. CTIL Interface Module (CIM): This module uses an image capture card to stream 
imagery from the CTIL simulation into the EXP-L PC. The software written for the CIM 
uses OpenCV to capture the image and has inputs for image resolution. 

2. SSO CNN Detection Module (DM): This module uses the convolutional neural network 
(CNN) YOLOv3 to detect the presence of trackside information. The structure and initial 
weights are open source; the AFS team has trained the network to detect trackside 
information found in the CTIL. The output of this module is the raw captured image and 
image bounding boxes of the detection results. 

3. SSO State Interpretation Module (IM): There are several IM modules for EXP-L. Each 
module accepts the raw image and specific bounding box information from the DM. Each 
IM module crops the raw image based on the bounding box information and then runs a 
traditional computer vision algorithm on the cropped image. Examples include the signal 
color IM, which determines the color of the signal light, and the sign module, which 
determines the text displayed on detected signs. 

4. Alerter Module (AM): This module receives input from all the IMs and the web service 
(i.e., locomotive state information) and then decides if the locomotive is operating within 
nominal range using the locomotive state information and results from the IMs. This 
module is also responsible with alerting the operator. This module will most likely hold 
GCOR and locomotive right of way rules. 

5. Web Service: The CTIL transmits and receives data over its proprietary web service data 
stream. The web service allows data to be sent around the CTIL so any computer 
connected to the CTIL network has access to locomotive-related information. A few 
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examples of such information available are position, speed, acceleration, grade, positions 
of all cab controls, brake pipe pressures, cylinder pressures, ER pressures, ammeter, and 
fuel use variables. A list of these variables is included in Appendix B. 

2.7 Hardware Selection 
Due to the requirements of image capture and processing and based on the trade studies for 
neural network architectures and hardware research in Appendix A and Appendix C, a powerful, 
fast computer and quality image capture card are required. The image capture card should have 
native support to read in images using the OpenCV image processor and have a USB interface. 
Similarly, the core need of a computer resource is mainly driven by the neural network selection, 
which places high demand on a powerful graphics processing unit (GPU). 
Simplistically, ExP-L’s goal for integrating with the CTIL hardware would be to split the HDMI 
signal going out to the CTIL engineer’s forward perspective display and capture that image while 
still displaying the original image through the splitter. The secondary output of the splitter would 
then be fed into the ExP-L computer via the HDMI to USB capture device. This representation is 
shown in Figure 4. 

 
Figure 4. Splitting HDMI Out to CTIL Front Screen to ExP-L Machine 

Image processing on a deep neural net can be computationally intensive, and a suitable framerate 
is required to capture useful information and communicate it to the operator. A target framerate 
of 4 frames per second was defined, requiring a high-end desktop with a powerful graphics card. 
The specific Alienware desktop mentioned in Appendix C was not selected. Instead, a Dell 
Precision 3630 with identical hardware specifications as the Alienware Aurora A7 was chosen. 
Of significance was ensuring the desktop would have a comparable and capable Nvidia GTX 
1080 GPU. The system ultimately operated at close to 10 frames per second. 

2.8 Outputting to CTIL 
For testing, the ExP-L machine output its results, including bounding boxes and state 
information, onto a display connected to the machine, allowing for easy development and 
functionality verification. For demonstrations and later use in the CTIL, the ExP-L machine 
would have to output its detection results of annotations and alert information back to the CTIL. 
This was done in two phases. One method mirrored the CTIL’s front main engineer’s screen onto 
the left-most conductor screen, so the main display had the original CTIL output, while the 
screen to the left had the same original image with added annotations and information based on 
detections within the image. 
The second mode of displaying the ExP-L output was to add this information on the CTIL’s 
HUD. The CTIL HUD consists of a Roland V-1HD video switcher to combine two HDMI 
signals into one image which is then sent to the CTIL. For this HUD to function, the engineer’s 
front view is combined with the output from the ExP-L machine. A chroma-key effect in the 
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video switcher is used on the HUD machine’s channel. This effect reads the signal coming in on 
its input (i.e., the ExP-L machine) channel and cuts out a specifically chosen color before 
combining it with the secondary (i.e., engineer’s front view) channel. In collaboration with 
Volpe human factors engineers, it was recommended the HUD produce all its contents on a blue 
background that the switcher’s chroma-key effect cuts out before combining the remainder with 
the engineer’s front view. The resolution of the engineer’s front view output is 1920x1080, and 
the output is set to be the same so the user can be certain any images or information drawn on the 
screen will appear on the CTIL front view with no distortion or issues. 

 
Figure 5. HUD Output Mixed with Engineer Screen and Standalone Monitoring 

Configuration 

2.9 ExP-L Software Flow 
The software process flow of ExP-L is shown in Figure 6. ExP-L obtains real-time image data of 
CTIL’s main engineer screen via the HDMI to USB capture card mentioned Section 2.7. This 
imagery data is then fed into the custom Aurora-trained YOLOv3 neural network (see Section 
3.1 for more information). This custom neural network detection module outputs bounding box 
information of the locations and labels for signals, signs, and objects found from within the input 
CTIL image. 

 
Figure 6. ExP-L Software Flow Diagram 

The bounding boxes obtained from the detector module are sent to the interpretation module, 
which discerns signals or objects seen within the CTIL image. If a given SSO is determined to 
contain urgent or actionable information, its data is fed into the altering module which fuses the 
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relevant live web service data from the locomotive to be displayed onto the HUD, thus alerting 
the operator. 
For example, if the locomotive approaches a red signal, ExP-L will detect the signals ahead and 
pass this information on to the IM. Once received, the IM interprets the location and detailed 
information (i.e., that the control signal is red). It is the job of the IM to understand that a red 
signal means the engineer has lost authority to operate on the current track and must stop. Once 
the interpretation of signals, signs, or objects is completed, the alerting module determines 
whether the information warrants an alert or warning to be sent over the HUD to alert and inform 
the operator. 



14 

3. Algorithm Development for Object Detection 

ExP-L is required to not only detect which objects are present in each image but also to localize 
the objects. In computer vision, this task is known as object detection. The current leading 
method for visual object detection is supervised deep learning, a technique which detects objects 
by capturing complex relationships between pixels in an image. This technique comprises three 
parts: 1) data gathering to create a labeled dataset, 2) training the algorithm on the labeled dataset 
to learn to discriminate objects of interest, and 3) testing the algorithm on images that are novel 
but similar to the training set to quantify how well it can detect objects of interest. Researchers 
used current, state-of-the-art methods in supervised deep learning to accomplish this goal. The 
supervised deep learning method achieved 71.46 percent test accuracy in detecting objects of 
interest while running at 7.5 frames per second on average. 

3.1 Training YOLOv3 
The “out-of-the-box” Keras-YOLOv3 network was tested on the CTIL data and performed well 
on some objects (e.g., signals and cars) but failed to detect other CTIL objects (e.g., signs). This 
is because the out-of-the-box network was never trained to detect unique signs and other objects 
within the CTIL simulated environment. Therefore, the team had to re-train YOLOv3 to detect 
CTIL specific objects. Results of this test can be found in Appendix A. 

3.1.1 Data Collection 
While the CTIL is quite realistic to the real-world operation of a locomotive in many respects, 
the imagery within the CTIL is not as representative of the real world as the imagery within the 
COCO dataset. For this reason, the team had to create its own dataset of CTIL images and 
annotations to train its own YOLOv3 network. The team created an image dataset using CTIL 
imagery to train the out-of-the-box Keras-YOLOv3 network on the open-source Common 
Objects in Context image dataset9 (COCO) with over 80 object categories.  
Proper network training requires a very large number of images. The more annotated images and 
training data, the better the network should perform when trained properly. The team’s used 
between 4,500 and 20,000 individual images of each SSO (the goal was to capture approximately 
5,000 images per class, but datasets such as COCO contain hundreds of thousands of labeled 
images). The team accomplished its own dataset collection by visiting the CTIL to record video 
of the main screen while the locomotive was under operation. This method allowed researchers 
to collect many images of each class of object very quickly. The team also collected some 
imagery during varying lighting and weather conditions to help give its dataset added variation. 
Table 2 summarizes the dataset, which was generated through annotation. 

 
9 Lin, T. et al. 2014. Microsoft COCO: Common Objects in Context. European Conference on Computer Vision. 
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Table 2. Annotation Classes and Number of Labeled Images per Class 

 

3.1.2 Data Annotation 
After preliminary research during Phase I (see Appendix D), the research team decided to 
annotate its relatively small collection of data on their own. At first, the team explored the 
possibility of using crowdsourcing marketplaces for image annotation (e.g., Mechanical Turk of 
Figure Eight) but found that it was too difficult to ensure the high-precision object annotation 
necessary for training accurate deep learning models. The red boxes in Figure 7 show the items 
the annotators were asked to label, and the white box shows how they labeled the data. 
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Figure 7. Correct and Incorrect Labeling of Signals 

The team built a custom annotating software tool intended to make the task of annotating as 
efficient as possible. This tool reads a directory full of images and shows each image one at a 
time, allowing the user to draw bounding boxes around objects of interest. Since the labeled 
images were captured from a video stream, the objects’ positions remained relatively constant 
across frames. Thus, this tool tracked objects from one frame to the next using a discriminative 
correlation filter.10 In this way, the research team could annotate every image without having to 
redraw bounding boxes between each frame. Researchers ensured quality by adjusting the 
tracking algorithm when necessary. The team manually labeled over 100,000 objects in over 
30,000 images. The complete count of all the objects labeled is shown in Figure 8. 

 
Figure 8. Number of Labeled Images per Class 

 
10 Lukezic, A., Vojir, T., Zajc, L., Matas, J., Kristan, M. 2018. Discriminative Correlation Filter with 
Channel and Spatial Reliability. International Journal of Computer Vision. 
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The team was also interested in the state of certain objects, and manually annotated these states. 
A complete explanation of which states were labeled and how those labels were used can be 
found in Section 4, Interpretation Algorithms. 

3.1.3 Training Process 
Deep learning is a machine learning method. This means that it “learn[s] from experience E with 
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 
measured by P, improves with experience E.”11 In this case, it learns by observing the labeled 
dataset of objects and learning the discriminating features of the objects of interest. 
A deep learning architecture for object detection is defined by a set of weights W, so that for any 
input image I, the transformation I*W generates an image which indicates the locations and 
identities of all objects of interest within the image I. This transformation is composed of a huge 
number of mathematical operations, usually consisting mainly of convolutions and activation 
functions. In the case of YOLOv3, the network performs 140.69 billion operations per iteration. 
Its accuracy is determined by a loss function which compares the predicted output y̅ = I*W to the 
ground-truth labeled images y and quantifies the accuracy of the guess. 
The network learns by comparing its predicted outputs y̅ to the labeled ground-truth data y and 
adjusting its weights W in a way that will minimize the loss function, in a process known as 
backpropagation. The network begins its learning process by randomly assigning weight values. 
Thus, the predicted locations of the objects in the image will also be random. After this first step, 
the loss function will have a very high value. In the training phase, the network is programmed to 
change its weights after every prediction to minimize its loss function. However, since the 
weights are huge matrices composed of tens of thousands of values, this loss function cannot be 
minimized analytically using simple differentiation techniques. Instead, the network minimizes 
the loss function iteratively, using gradient-based techniques to decrease the value of the loss 
function after each step. 
On the YOLOv3 architecture, this training process usually takes anywhere from a few days to a 
few weeks, depending on the processing power of the computer it is using to train. Since the 
exploration space of all possible weights values is so huge, it is computationally infeasible to 
solve for the global minimum of the loss function, so training continues until the value of the loss 
function is sufficiently low and its progress slows (See Figure 9).  

 
Figure 9. Loss Function of Training Algorithm over Time 

 
11 Mitchell, T. 1997. Machine Learning. McGraw-Hill Science/Engineering/Math, ISBN 0070428077. 
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Once training is complete, it is important to test the network on test images on which the network 
has not yet been trained to evaluate how well the network has learned to identify the objects. 

3.2 Evaluation of Object Detection Algorithms 

3.2.1 Detection Accuracy 
When using a novel test set (i.e., one on which the network has not been trained) to evaluate the 
performance of the trained YOLOv3 network, ExP-L achieves 71.46 mean average precision 
(mAP) (See Figure 10). mAP is a commonly used metric in object detection research and refers 
to the average precision across all the classes in the test set. Since this value ranges between 0 
and 100, it can intuitively be thought of as percent accuracy. For reference, YOLOv3’s accuracy 
on its original training set, Microsoft’s COCO, was 57.9.12 The COCO dataset is a much more 
difficult dataset than the constrained simulated environment of the CTIL, which explains the 
increase in mAP that was observed in ExP-L’s performance. 

 

Figure 10. Detection Accuracy Over Training Data 
It is difficult to visualize exactly what a mAP of 71.46 percent means in terms of qualitative 
performance. One problem is that objects appear in view for many frames, usually 40–200 
frames, so if around 70 percent of those objects are correctly detected then it can be certain that 
the object will be correctly identified; however, if the network detects false positives, this can be 
misleading for the user. The second and most salient problem is that the accuracy reported can 
only be as correct as the accuracy of the ground-truth labels. 
Most of the error in this metric is due not to human error (though there was a small amount of 
human error in labeling), but due to intentional design choices about which objects to label and 
how. Figure 11 shows how the system can be correct, but stylistic choices result in a “false 
positive” reported in the dataset (the cyan boxes show the ground-truth label of the objects 
present in the image, and the red boxes show false positives detected in the image). For example, 
researchers made the decision that they would only label cars that were on or near the track, 

 
12 Redmon, P., Farhadi, A. 2018. YOLOv3: An Incremental Improvement. Tech Report. 
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because those were the only vehicles that could be manually included in the CTIL. Thus, the car 
that the trained network detected near the left edge of the image was counted as a false positive, 
even though it was certainly correct that a car was present at that location. Also, the railroad 
crossing was recorded as a false positive because its overlap with the ground truth box was 37.58 
percent, which is less than the required 50.0 percent to be considered a true positive. However, in 
looking at the image it appears that the red box makes a satisfactory prediction of the location of 
the railroad crossing. Overall, a qualitative study of the predicted bounding boxes appearing in a 
video showed confidence that this ExP-L visual system could be used to supplement an 
engineer’s situational awareness in the train cab. See Figure 12 for more output image examples 
from ExP-L. 

 
Figure 11. Disparity between Labeled and Predicted Object Locations 

  
Key: ground truth - true positive - false positive 

Figure 12. False Positive Example Object Detection Output 



20 

There are many improvements that could increase the overall accuracy of a deep neural network, 
but the most dependable and straightforward method of improving the results is almost always to 
increase the amount and quality of training data. However, in this case, a possible limitation for 
achieving higher accuracy was that the CTIL’s generic imagery limited the overall increases to 
be gained from neural networks when fed additional data. 

3.2.2 Detection Speed 
Speeds of the trained algorithm differed depending on the central processing unit (CPU) or GPU 
on which the network ran. From a purely CPU-based approach, the YOLOv3 network trained on 
the team’s annotated data (running on a Dell Precision 5810 desktop with an Intel Xeon E5- 
1630 v4 processor) processes the YOLOv3 detections at approximately 0.8 frames per second. In 
this scenario, the YOLOv3 neural network is heavily bottlenecked by the CPU due to lack of 
computational cores. In this case, GPU-accelerated computing excels due to the orders of 
magnitude more computational cores onboard GPUs. When running the same neural network on 
a Dell Precision 3630 with a Nvidia GTX 1080 GPU, the team recorded a mean processing speed 
of 7.5 frames per second (see Figure 13 below). 

 

Figure 13. YOLO Inference Speed 
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4. Interpretation Algorithms 

ExP-L is designed to help conductors and engineers in the cab to be more aware of their 
surroundings. The first step in this process is to detect SSOs within the image, but this is not 
sufficient. For a vision-based algorithm to be valuable, it must be able to not only detect objects 
within the image, but also interpret important information about those objects. For example, 
knowing the location of an overhead signal is meaningless without also knowing if that signal is 
displaying a red, yellow, or green light. The specific SSOs which required closer analysis were 
determined in a collaborative effort between the research team, FRA, and MIT researchers. The 
results are summarized in Table 3. 

Table 3. Interpretation Algorithm Performance on Ground Truth Bounding Boxes 
Class State Information Example State Aggregated Accuracy (%) 
Circular Signals Signal color “GREEN” 100% 
Elliptical Signals Signal color “RED” 99.7% 
Cars Location relative to train tracks “ON TRACK” 95.6% 
Railroad Crossings Gate state “DOWN” 98.5% 
Station Signs Name of station “CLARENDON HILLS” 95.0% 
Mile Marker Signs Mile number “14” 90.0% 
Track Splits Split Direction “LEFT” 99.4% 

4.1 Interpreted States 
Phase II of ExP-L was focused on first determining which objects need further attention and then 
developing algorithms to classify those objects into groups. Section 2.1 shows what further 
information, if any, was needed to provide actionable feedback to the CTIL user. The next 
sections describe the algorithms used to determine the states of each object (an example of object 
states is shown in Table 4). Each algorithm takes as input the region of interest (ROI) within the 
image, which is determined using the object detector. The accuracies of all the state classifiers 
are summarized above in Table 3. Since none of these state classifier methods rely on supervised 
learning, the reported accuracy reflects the accuracy achieved on all the available labeled images. 
Note that the state interpretation algorithms were tested using ground-truth bounding boxes for 
the ROI instead of the predicted bounding boxes of the object detector. This is a fair way to 
examine these algorithms in isolation, but the perceived accuracy may be slightly lower than 
reported since interpretation accuracy will naturally suffer from bounding box mistakes from the 
object detector. 

Table 4. Example Object States 
Object State Example Image Example Output 
Text on station signs 

 
“WESTMONT” 

Numbers on mile markers 

 

“19” 

State of signals 

 

“YELLOW” 
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4.1.1 Signal Color 
Circular and elliptical signals provide information about the required behavior of the train for 
certain lengths of track. Different configurations could signal to the engineer that they should 
speed up, slow down, prepare to slow, or switch tracks. It is very important for the engineer to be 
aware of the displayed color of the image. Railway governing officials are particularly concerned 
about situations in which the color of the signals changes while it is in view of the engineer. 
ExP-L’s capability to continuously monitor the color of railway signals will be particularly 
valuable in these scenarios. See Figure 14 for a visual representation of this algorithm. 

 
Figure 14. Signal Color Classification 

It is assumed that at any given time, a signal (circular or elliptical) can be in one of four states: 
red, yellow, green, or off. ExP-L uses low-level color information to determine the signal’s state, 
and then stores the color of the signal between captured frames. If any color configuration 
requires action from the engineer or conductor (e.g., red signals, yellow signals, or signals 
changing colors), an icon is displayed on the HUD. 
After the location of the signal has been determined, ExP-L uses the hue, saturation, value (HSV) 
color space to determine its color. HSV color space is a very common tool for discerning color 
because it allows each pixel to be explicitly described by its hue and saturation, rather than as a 
mixture of red, green, and blue. In a cropped image around a signal, the only pixels of high 
saturation are those displaying the signal color. Thus, ExP-L extracts these pixels from the ROI, 
then determines the mode of the hues of these pixels. In practice, it was determined that the 
mode was a more accurate descriptor of color than the mean or median. If this “quintessential 
pixel” falls within the red, yellow, or green range of the color wheel, then the signal is classified 
to be of the corresponding color. If the pixel falls outside all these ranges, or if no sufficiently 
saturated pixels are present, then the signal is classified as “OFF.” This method achieved near 
perfect accuracy for the team’s labeled images (see Table 3). In practice, this method fails only 
when YOLOv3 outputs an erroneous signal bounding box.  

4.1.2 Car on Track Detection 
Whenever a train passes through a residential area, cars will be present in its surroundings. It is 
important for the engineer to be aware of the locations of cars near the train, but the only 
situation in which it is critical to be aware of a car’s location is if the car is on the tracks ahead of 
the train. Thus, any perception supplement to the engineer must be able to detect when cars are 
located on the tracks ahead of the train. 
ExP-L accomplishes this task in two steps. First, it must determine the location of its own tracks 
and the location of the car. Second, it must determine whether these objects intersect. Each of 
these steps is discussed in detail below. 
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The location of the car within the frame is determined from YOLOv3, reported as a bounding 
box around the car. The most important insight in determining the location of the tracks is to 
recognize that any image captured from a camera mounted rigidly on the front of the train will 
always display the closest parts of the track in the same location. If the camera is upright and 
centered on the front of the train, for example, then the tracks directly under the train will always 
be at the bottom of the frame, with the left-most track just left of center and the right-most track 
just right of center. Since a straight track ahead of the train engine will appear as a long, straight 
line in the image, ExP-L uses the Hough transform with a high accumulator threshold to find all 
long straight lines in the image. It then filters out all but the two lines which fall closest to the 
expected location of the track. It then extends these detected lines out to the horizon in the image 
(which remains constant in the CTIL environment), and labels these two lines as the left and 
right track. This method works very well under a range of environmental and lighting conditions 
and is much more robust to changing lighting conditions than color-based track detection 
methods. The most obvious drawback of this method is that it cannot detect curving tracks ahead 
of the train. This weakness was deemed acceptable for the proof-of-concept phase of ExP-L but 
will need to be improved as it moves more toward real-world application. For straight-ahead 
situations, this method has proven to be near-perfect, even in the darkest environments that the 
CTIL supports. 
The second step in classifying a car as on-track or off-track is to determine whether the detected 
tracks intersect the detected car. The bounding areas of the tracks and the car are represented as 
convex quadrilaterals. For the car, this is the bounding rectangle detected by YOLOv3. For the 
tracks, this quadrilateral represents the area between the lines representing the left-most and 
right-most tracks. Since these quadrilaterals are convex, straightforward methods of intersection 
can be used. ExP-L uses Python’s Shapely package to implement this method quickly. The 
overall accuracy of this method is 95.6 percent, as shown in Table 3. 

4.1.3 Railroad Crossing Gate State 
Crossing gates are frequently located at vehicle intersections with the train track. These gates 
close 15 to 20 seconds before the train arrives at the intersection, as a warning to car drivers and 
pedestrians to stay off the track. It is important for these gates to remain operational to ensure the 
safety of all users of the train track and the road near the track. 
After detecting the location of railway crossing gates at intersections, ExP-L also reports the 
state of the gate as either “UP” or “DOWN.” If the gates are functioning properly, it should 
always report that the gate is down as it is crossing the intersection. However, sometimes these 
gates malfunction and remain in the “up” position even when the train passes by. Since the gate 
bars open and close across the street, perpendicular to the train tracks and away from the view of 
the train, it will not be possible to detect the state of the gate from a train-mounted camera until 
the train is very close to the gate. Thus, ExP-L is not able to inform the engineer of a 
malfunctioning gate with enough forewarning to slow the train down before arriving at the 
intersection. However, the classification of gate state from a train-mounted camera is still 
valuable for at least two reasons. First, knowledge of malfunctioning gates allows the engineer to 
slow the train and take other appropriate actions needed. Second, while it may not be possible to 
recognize the state of the gate from a train-mounted camera, similar vision technology could be 
used in a crossing-mounted camera to provide constant surveillance of the crossing gate. It could 
then relay this information to oncoming trains. Thus, the engineer of the train could be notified 
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of the malfunction with enough forewarning to slow down the train in anticipation of cars or 
pedestrians on the track. 
ExP-L uses simple low-level information about the image to determine gate state (See Figure 
15). After the whole crossing structure is cropped out of the image, the important piece of 
information is the red-and-white striped gate. The algorithm to determine whether this gate is up 
or down is shown in Figure 15. First, the ROI is converted to HSV color space. Second, the 
sections of the ROI containing strong red pixels are extracted. Third, morphological closing is 
used to close the gaps between the extracted red sections. After this step, ExP-L has extracted the 
crossing gate, and the width and height of this crossing gate are determined. If the width is 
greater than the height, that means that the crossing bar is mostly horizontal, and it is classified 
as “DOWN.” Otherwise, it is classified as “UP.” The per-frame accuracy of this method is 90.2 
percent. 

 
Figure 15. Method to Classify Rail Road Crossing Gate Position 

ExP-L also uses a voting mechanism to aggregate votes across frames. By Condorcet’s jury 
theorem and since the per-frame accuracy is well above 50 percent, a voting algorithm will 
perform far better than detecting the state of each frame.13 The voting mechanism first uses a 
“decision variable” of zero in the first frame in which the railroad crossing is detected. Then, for 
every frame that the gate state is detected, the decision variable increases by one if the state is 
predicted to be “UP” and decreases by one is the state is predicted to be “DOWN.” If the 
decision variable reaches a sufficiently negative value, then the gate is classified as “DOWN.” If 
the decision variable reaches a sufficiently positive value, then it is classified as “UP.” This 
voting mechanism provided a dramatic increase in gate state prediction accuracy, up to the 98.5 
percent reported in Table 3. 

4.1.4 Text Recognition 
Mile markers and text on signs are decomposed using optical character recognition (OCR), 
which is a modern type of feature matching. The team used Google’s Tesseract OCR library 
comprised of a long short-term memory recurrent neural network which has been pre-trained on 
over 100 languages and different font types to recognize lines and shapes quickly and accurately 
and then match those shapes to known characters. This algorithm was chosen based on research 
completed in Phase I (Appendix E). The team’s implementation of this OCR algorithm functions 

 
13 Condorcet, Marquis de. “Essay on the Application of Analysis to the Probability of Majority 
Decisions.” Print. 1785. 
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by its YOLOv3 network supplying the bounding box of the detected station sign or mile marker 
to the Tesseract algorithm (Figure 16). 
However, even under the controlled environment of the CTIL simulator, OCR is very difficult, 
and Tesseract does not perform perfectly. Researchers implemented two methods to increase text 
recognition accuracy. First, they leveraged their knowledge of the expected text on the signs and 
signals to improve accuracy. In the case of mile markers, the team post-processed the predicted 
text output of Tesseract, filtering out all predictions that were not numbers or decimal points. In 
the case of station signs, the predicted text was compared against a known list of all possible 
station sign names between Chicago, IL, and Aurora, IL (i.e., the route of the CTIL). Using the 
Damerau-Levenshtein distance, ExP-L output the sign name most like the predicted text from 
Tesseract. 

 
Figure 16. Station Sign Text Classification 

Second, the team detected signs across multiple frames, and only output the text once the same 
text had been predicted for a given sign for five frames in a row. This helped reduce noisy 
guesses from Tesseract when the sign was still far away. These two methods greatly increased 
ExP- L’s accuracy. Thus, the observed accuracy on a live video was higher than the per-frame 
accuracy reported in Table 3. 
Using no vote aggregation, the per-frame accuracy of this method was 82.0 percent for station 
signs and 74.7 percent for mile markers, as shown in Table 3. ExP-L also included an option to 
return no prediction of the text on the sign or marker. On the test set of over 4,000 objects, ExP-
L achieved 90.0 percent recall and 100.0 percent precision for mile markers, and 95.0 percent 
recall and 100 percent precision for station signs when using vote aggregation. ExP-L outputs its 
interpretation as soon as it is confident enough in its prediction. This means that although the 
optical character recognition does not work at the same distance that the team chose to annotate 
the objects, the train operator can trust in what ExP-L outputs as soon as it is confident enough in 
its prediction. Since station signs and mile markers do not convey time-sensitive or safety-critical 
information (as does a car on the tracks), the engineer does not need to be immediately informed 
of its text, making this a satisfactory result. 
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4.1.5 Track Split Direction 
Railroad track splits allow multiple trains to travel along similar lengths of track at the same 
time. They are often located near train stations to allow trains to switch between nearby tracks 
for a short time and then diverge to different locations. 
Engineers must be aware when the train is approaching track splits so that they can make sure 
that their train remains on the scheduled track. When more than two tracks are lined up in 
parallel, the engineer must know not only that a track split is coming up, but also to which 
adjacent track the split is going to transfer the train. Appendix F reports findings related to the 
visual detection of railroad tracks within images. ExP-L reports not only the location of track 
splits but also whether the track is splitting to the right or to the left (see Figure 17). 
The method for determining the direction of the track split also depends on the location of the 
track. The Hough transform is used to localize the tracks within the frame, just as it was used in 
determining whether a car is on the tracks. Then, the location of these tracks is compared to the 
location of the bounding box around the track split. The key is to recognize that the bounding 
box around the track split contains part of the track that heads toward the new track. Thus, this 
bounding box will be offset to the left if the track splits to the left and to the right if the track 
splits to the right. Therefore, if the midpoint of the bounding box is left of the midpoint of the 
tracks, then the split is classified as “LEFT;” otherwise, it is classified as “RIGHT.” If the 
bounding box does not intersect the tracks at all, then the split is classified as “OFF TRACK,” 
meaning that the train is not currently on the track that will be split. 
The team noted that the intended direction of travel for the train at the split would be a valuable 
piece of knowledge. Researchers explored the potential of providing this information as an 
element of ExP-L; however, upon close inspection of the track splits within the CTIL, it was 
discovered that they were not rendered with fine enough detail to discern this information. 
Further research into this application should be conducted on real-world, train-mounted imagery 
to determine the feasibility of reporting this state. 

 
Figure 17. Example of Track Split Images
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5. Human-Machine Interface Prototype 

After detecting important SSOs and determining their current state, the next step for ExP-L is to 
communicate urgent and actionable information in a meaningful way. Presentation of this 
information can be broken down into two steps. First, determine what information is urgent and 
actionable (i.e., what information merits being displayed to the engineer). Second, determine 
how that urgent and actionable information will be presented to the engineer in an HMI. Figure 
18 shows an example of how human-machine interfaces can quickly become overwhelmingly 
complex. 

 
Figure 18. Human-Machine Interface Examples 

5.1 Urgent and Actionable Information 
Not all information about every object in every state will be urgent or actionable. For example, a 
green signal requires no action on the part of the engineer; an engineer notified by the HMI every 
time a green signal is detected would soon come to ignore that HMI. On the other hand, if an 
engineer were to fail to notice when that light changed to red, the proper notification of that red-
light change could prevent a costly or deadly accident. 
Recall from Section 2.1 that the SSOs which the team determined could convey urgent and 
actionable information are cars, circular and elliptical signals, station signs, mile markers, 
railroad crossings, split tracks, and two-mile markers. From these, the team determined four 
particularly important situations to display in the HMI. These situations are track authority 
violations, a car on the tracks, broken railroad crossings, and current and next station. 
Depending on the severity of the situation, either an alert or warning will be issued. Warnings are 
reserved for less actionable information (e.g., informing an engineer of a malfunctioning railroad 
crossing) and are presented to the engineer as warning text displayed on a yellow background. 
Alerts are more severe and require the immediate attention of the engineer. Alerts for scenarios 
such as cars on the track or track authority violation are presented with the relevant alert text 
displayed on a red background to capture the engineer’s attention. 

Cluttered HMI 

 

Simple HMI 
https://www.autoevolution.com/news/continental- 
shows-its-augmented-reality-head-up-display-for- 
2017-84307.html 
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These situations certainly do not constitute an exhaustive list of all the information of which the 
engineer should be aware. A list of that type would require a more in-depth study into the 
frequency and severity of particularly dangerous train situations. However, these scenarios can 
be extrapolated to other scenarios. Thus, these four situations serve as an appropriate prototype. 

5.1.1 Track Authority Violations 
There are some situations where the detected signal state above the current traveled track would 
indicate some type of track authority violation. This indication could mean one of many things. 
For instance, a flashing red signal over green could indicate to an engineer that a limited 
approach is in effect on the current track and they have been given authority to move onto a 
specified adjacent track. While there are hundreds of possible combinations of signal states 
across all track signals, ExP-L focused on interpreting the state of the current and (if applicable) 
adjacent track authority. Table 5, Table 6, and Table 7 below represents all signal states ExP-L 
can interpret and present to the engineer. 

Table 5. Single Signal State Interpretation 
State Name 
Green none 
Yellow APPROACH 
Red STOP 
Blinking Yellow APPROACH MEDIUM 
Blinking Red RESTRICTING 

Table 6. Double Signal State Interpretation 
Top Signal Bottom Signal Name 
Green Red None 
Yellow Flashing Green APPROACH LIMITED 
Yellow Green ADVANCE APPROACH 
Flashing Yellow Red APPROACH MEDIUM 
Yellow Flashing Red APPROACH RESTRICTING 
Yellow Red APPROACH 
Red Green DIVERGING CLEAR 
Red Flashing Yellow DIVERGING APPROACH MEDIUM 
Red Yellow DIVERGING APPROACH 
Red Flashing Red RESTRICTING 
Red Red STOP 

Table 7. Signal State Change Interpretation 
Original Signal State New Signal State Name 
Green Red SIGNAL CHANGE TO RED 
Red Green SIGNAL CHANGE TO GREEN 
Green Yellow SIGNAL CHANGE TO YELLOW 
Yellow Green SIGNAL CHANGE TO GREEN 
Yellow Red SIGNAL CHANGE TO RED 
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ExP-L has been designed to extract significant signal state information rather than extract all 
possible signal states. This is done for simplicity so the engineer is not overwhelmed with 
extraneous information. For instance, an engineer does not need to be alerted to situations such 
as a green signal on their own, all other tracks, a limited clear approach on a secondary track, or 
if they have signal and right-of-way authority on their own current track. An example of an 
appropriate signal state alert can be seen in Figure 19. 

 
Figure 19. Red over Yellow Signal, Diverging Approach Alert 

5.1.2 Car on the Track 
As described in Section 4.1.2, cars, buses, or trucks determined within the bounds of the current 
track alert ExP-L to display a warning in the upper-left of the engineer’s front view. An example 
of this warning can be seen in Figure 20. Alert information of a car on the track is ranked as the 
most important alert provided by ExP-L because of possibility of loss of life and significant 
damage. 

 
Figure 20. Car on Track Alert 
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5.1.3 Railroad Crossings 
Section 4.1.3 explains how ExP-L determines whether a railroad crossing gate is in the up or 
down position when a vehicle is present. If determined to be up, an alert is presented to the 
engineer in the upper-right corner. An example of this warning can be seen in Figure 21. 

 
Figure 21. Railroad Crossing Warning 

5.1.4 Current and Next Station 
The final piece of information presented in the HUD is the next station along the track. This last 
display is less urgent than the other three, because the train’s location does not necessarily 
constitute an emergency. However, engineers must be aware of their location along the track, 
and prepare for what is coming ahead. In fact, according to FRA certification standards, each 
engineer is only certified along certain sections of track14, and engineers are required to 
memorize the segments of track upon which they will be operating the train. Thus, a 
supplemental system with the same capacity may be a useful addition. 
Since the CTIL only simulates a known section of track between Aurora, IL, and Chicago, IL, all 
the possible signs that ExP-L will observe can be stored in the order that they will be observed. 
(In a real-world scenario, it is reasonable to assume that this information will be available, as 
well.) Thus, when ExP-L recognizes the text on a given sign, it can also output the name of the 
next sign that it will see. This information will allow the engineer to be aware of not only the 
current surroundings but also of the surroundings that are ahead. 

  

 
14 https://www.federalregister.gov/documents/2011/11/09/2011-28175/conductor-certification 

https://www.federalregister.gov/documents/2011/11/09/2011-28175/conductor-certification
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6. Limitations 

There remain some limitations in the ExP-L system that must be resolved before it can be used 
on a real train on real track. The most obvious limitation is that ExP-L has only been 
demonstrated in a simulated environment. While a simulated environment offers an opportunity 
to demonstrate a novel system with relatively low overhead, it carries with it a few inherent 
constraints that cannot be overcome without moving to a real-world environment. There are 
design limitations which could not be resolved under the current system requirements.  
Some design limitations are a result of requirements evolving as the team learned lessons 
throughout the program. Because deep learning is heavily dependent on data and how the data is 
labeled, evolving requirements require different data. This program offered the opportunity to 
refine the requirements of the vision system with relatively low overhead and provide insight 
into efforts toward defining the requirements of a system installed in operational locomotives in 
future work. Lessons learned during this research will prove invaluable as the system is 
progressed into the real world. 

6.1 Simulation Limitations 

6.1.1 Distance to Time-Critical Objects 
In the early phases of ExP-L, it was determined that eight SSOs in the CTIL environment would 
be of particular importance in providing situational awareness. Four of these eight SSOs – 
circular and elliptical signals, cars, and track splits – require a quick reaction from the train 
operator. Given that trains can require a mile or more to stop, a valid ExP-L system must be able 
to detect these objects at that distance. In preliminary experiments using the CTIL, it was shown 
that objects are not fully rendered graphically beyond approximately one half-mile down the 
track. Thus, no visual system would be able to detect or classify these objects in time for the 
operator to stop the car. The operational sensor payload must be designed to meet the long-
distance detection requirement to identify at risk cars far enough down the track. 

6.2 Design Limitations 

6.2.1 Unlabeled Objects 
The state of most of the SSOs the ExP-L system can detect can be determined by either 
analyzing their location or a prominent factor in that object. For example, the color of a circular 
signal is determined by looking at the light, the most prominent element of that object. However, 
track splits are more difficult. In this example, the most important factor an engineer would want 
to know about a track split is its setting (i.e., if the train will remain on its own track or be shifted 
to an adjoining track when it reaches the split). However, to discern the split's setting, a visual 
observer must look carefully for a small space between the current track and the beginning of the 
secondary track to see if the train will be diverted to the adjoining track (see Figure 22). The 
CTIL only renders this information when the track split is in the very near field. Additionally, the 
number of track split images used for training was one of the smallest datasets due to the limited 
number available in the CTIL. This led to the relatively low performance of the detection 
algorithm in comparison to other detection classes. With the CTIL being a relatively rough 
representation of track switches in the real world, it was decided that the requirement of 
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determining switch position should be a requirement explored for the real-world operation, but 
not of this demonstration system. 

 
Figure 22. Close-up of Track Split Setting 

A second object which is difficult to discern in the CTIL environment is the difference between a 
signal which is off and one which is simply facing the other direction. As shown in Figure 23, 
there are only subtle differences between a switched-off signal and a signal facing the other 
direction. The importance of signals in the “off” state was not identified during the data 
collection and labeling phase of the effort, so the training data set did not contain any signals in 
their off state. When the object detector was trained to detect signals, it “learned” to ignore any 
that were facing backwards, and ultimately extended that learning to signals that were off when 
tested in the new scenario. However, because all signals should always display either a red, 
yellow, or green light, a switched-off signal could indicate a potentially hazardous malfunction. 
Thus, ExP-L should be able to detect this, and future developments should incorporate this 
requirement into the design. 

 
Figure 23. Backwards and Off Signals 

6.2.2 Determining Appropriate Signals 
ExP-L has been shown to be effective in alerting the train operator of urgent and actionable 
visual information regarding the environment. However, one situation which will require further 
development is its ability to discern which signals correspond to which track. In Figure 24, for 
example, ExP-L should be able to output that there are five possible tracks, and that the four red 
elliptical signals correspond to the two rightmost tracks. Currently, ExP-L just outputs 
recommendations based on the right-most column of signals. In this case, this would mean 
telling the train to come to a stop even though that red signal corresponds to a track that is two 
tracks over. 
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In the example shown in Figure 24, ExP-L is unaware of additional context required to determine 
that the signals shown do not apply to the track the train is currently on; specifically, the software 
must recognize that the signal stanchion is located on the right side of the track and therefore the 
two columns of signals refer to the two rightmost tracks. This requires an additional set of data 
be collected and labeled and the system retrained to recognize left versus right standing 
stanchions. Additionally, the system must be aware of how many tracks are running parallel to 
the current track. Currently, the algorithm detects the track by leveraging the fact that the relative 
position between the camera and the rails will always be the same; in other words, the track 
always extends away from the train from the same spot on the frame. Additional work should be 
completed to detect all the tracks in the field of view and discern which signal corresponds to 
that track; this requirement must be included in the operational development. 

 
Figure 24. Multiple Signals over Multiple Tracks 
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7. Next Steps 

Having successfully demonstrated the ExP-L system, the approach and lessons learned from this 
program can be leveraged to transition the system to an operational locomotive. In parallel, the 
existing CTIL-based system can be used for human factors research to refine HMI to a point 
where it is most useful for operators. This section considers what future work is required for each 
of these opportunities. 

7.1 Implementation into Operational Locomotives 
While the CTIL provides an excellent platform for the rapid development of a prototype 
perception system, operational locomotives present a much different set of requirements. 
Lessons learned from the CTIL demonstration will help define these requirements; however, to 
transition the system into rail operations, a detailed study establishing the top-level requirements 
of an operational external perception system would need to be conducted through discussions 
with industry representatives to examine the most useful capabilities and determine sensor 
requirements. Regulatory approval/certification requirements also must be examined early on to 
understand the constraints regulations put on the system. 
The sensor payload can be selected from these requirements, considering items such as detection 
range, lighting conditions, and other operational requirements. A significant amount of labeled 
data from the sensor payload is required to train a neural net that can detect signs, signals, and 
objects with a high level of confidence. For example, Microsoft’s Common Objects in Context 
contains millions of images with tens to hundreds of thousands of unique instances of each 
object of interest. A similar order of magnitude would be required from this dataset. 
After the system is trained, developers must conduct extensive testing on representative test sets 
to determine the efficacy of the system and identify areas that may require improvement. As 
acceptable performance is reached, development of the logic that integrates with the HMI to 
provide contextual information could culminate in a test on board an operational locomotive. 

7.2 Human-Machine Interface 
The development of an appropriate HMI similarly starts with defining high-level requirements. 
These requirements will overlap significantly with the development of the sensing system. 
However, requirements that incorporate human factors can be more difficult to define. Using the 
existing capabilities in the CTIL, studies with engineers to see how they interact with various 
revisions of the HMI can be conducted to help establish these requirements and the initial design. 
The information that is found to be most useful will flow back to the requirements of the 
operational system detection payload requirements. 
The MIT Human Systems Laboratory has provided initial thoughts on the various factors that 
would go into designing a production level HMI for the vision system. This is included in 
Appendix G. 
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8. Conclusion 

A research team from Aurora created an end-to-end perception system capable of 1) capturing 
synthetic images from CTIL, 2) detecting, locating and interpreting objects of interest within the 
image, and 3) communicating the resulting urgent and actionable information to the engineer in 
an accurate and efficient manner. This technology has only been demonstrated in a simulated 
environment, but similar efforts could be used to extend these capabilities into rail operations. 
The research team anticipates that a visual system of this kind will be integral to any system 
seeking to enhance the decision-making capabilities of an engineer. 
The biggest contribution of ExP-L is its noncooperative perception ability. Other operator- 
supplementing systems, such as PTC, connect the train to a network of other trains and signals, 
but ExP-L actively monitors its immediate surroundings. This assists the train engineer in 
reacting to unforeseen and potentially hazardous situations, such as a car on the track. Any 
system which seeks to support human perception capability must be aware of both planned and 
unplanned scenarios. 
One major result of this research was a clearer idea of which signs, signals, and objects present 
the most urgent and actionable information to the engineer in a noncooperative environment. The 
objects determined to be most important to detect were cars, station signs, mile markers, circular 
signals, elliptical signals, railroad crossings, and track splits. Current state-of-the-art computer 
vision techniques require many labeled objects of interest to be successful, so this knowledge 
will be valuable in creating labeled datasets when the capabilities of this system are generalized 
to the real world. 
This technology represents a valid proof-of-concept for the ability of visual perception to aid 
engineer situational awareness. Localization accuracies upwards of 95 percent for many 
important objects and interpretation accuracies upwards of 99 percent prove that a computer 
vision system can provide valuable and reliable information to human train operators. Qualitative 
reviews of ExP-L running on live CTIL video demonstrate its usefulness in noticing small but 
important changes, such as a signal changing color while in view. 
The biggest obstacle foreseen for ExP-L moving forward is the difficulty in generating real-
world, labeled datasets large enough to create a reliable and robust computer vision system. The 
CTIL provides a great starting point for qualifying visual perception capabilities, but the real 
world is much less constrained than the images that can be generated in a simulated environment. 
Weather, lighting conditions, and human activity are examples of variations that ExP-L must be 
trained to handle before it can be trusted to provide a visual supplement to train operators. 
Another important factor in all areas of autonomy is the problem of trust. How can a system be 
created that is reliable and efficient enough so that the human operators in the cabin will trust the 
displays that appear in the HUD? This is a difficult question that can be answered as researchers 
from the fields of artificial intelligence and human factors collaborate to create trustworthy 
perception systems on trains. The research team believes that ExP-L represents an important first 
step toward perceptual enhancements in the cab to improve the safety of American railways. 
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Appendix A. 
Deep Neural Network Selection 

Deep Neural Network Selection 
For this work, the research team proposed to use a deep learning approach for object detection. 
Since this is an initial prototyping phase, major emphasis was on using commercial off-the-shelf 
(COTS) or open source products to show system feasibility with the eventual goal of 80 percent 
threshold, 90 percent objective detection accuracy. For deep neural network (DNN) selection, the 
team conducted trade studies of start-of-the-art deep learning algorithms and an open source, pre-
trained network was selected. Transfer learning techniques were then used to fine-tune the pre-
trained network to detect the SSOs found in the CTIL imagery. This appendix details the 
selection and testing process for the DNN that will be used for ExP-L. 

Deep Neural Network Framework Selection 
Several deep learning frameworks exist for developing and training neural network architectures. 
Some are supported by large companies such as Google (officially or via funding), while others 
are maintained by the open source community. For ExP-L, the chosen framework must be easy 
to use and implement, state-of-the-art, and include support for Python and NVIDIA GPUs. A 
thorough review of all the available frameworks (Table 8) evaluated against a variety of criteria 
helped determine that Keras was the best framework to use for ExP-L. 
Keras is easy to use, sits on top of TensorFlow, and supports Python. Keras supports recurrent 
neural networks (RNNs), convolutional neural networks (CNNs), and parallel execution. Keras is 
also heavily supported online, with implementations of popular DNNs readily available for use.  

Table 8. Deep Learning Frameworks Available via Open Source 

roNNie.ai Darknet Intel Math Kernel Library Neural Designer TensorFlow 

BigDL Dlib Keras OpenNN Theano 

Caffe DataMelt MATLAB + Neural 
Network Toolbox PlaidML Torch 

Deeplearning4j DyNet Microsoft Cognitive 
Toolkit PyTorch Wolfram 

Mathematica 

Chainer Intel Data Analytics 
Acceleration Library Apache MXNet Apache SINGA VerAI 

 
Deep Neural Network Trade Study 
The team’s approach to this trade study was to survey several state-of-the-art DNNs that have 
been evaluated against large datasets, and then down select several networks for evaluation 
against CTIL imagery. The final down select network was based on detection accuracy, real-time 
speed, and availability of transfer learning implementations. The DNNs shown were evaluated 
against large datasets such as COCO and PASCAL Visual Object Classification (VOC). YOLO 
stood out as an attractive option due to its high mAP, which is a measure of accuracy, and real 
time speed. Faster RCNN10 and Mask RCNN also stood out for their performance, although real 
time implementations were not readily available. RetinaNet is not shown here, but it was also 
down selected due to its performance. 
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Table 9. mAP Evaluation of DNNs against Large Datasets 

 

Table 10 is a summary of down selected networks with high-rated mAP or accuracy. These 
DNNs were then evaluated based on CPU and/or GPU processing time, availability of 
implementation on the GPU, and ease of use. The dataset used for this evaluation was gathered 
in the CTIL. At the time of this trade study, the latest version of YOLO was YOLOv3, so this 
was the version used. Based on processing or inference time and ease of use, YOLOv3 and 
RetinaNet were selected as the top two pre-trained networks. 
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Table 10. Pre-Trained DNNs Considered for ExP-L 

 
DNN 

 
Creator 

Open/Closed 
Source 

Year 
created 

 
Framework 

CPU/GPU 
Processing 

Time 

Ease of 
use/availability of 

software 

YOLOv3 
 

Joseph 
Redmon, Ali 
Farhadi 

 
Open Source 

 
2018 

Darknet, 
PyTorch, 
Keras, and 
Tensorflow 

1 sec/0.3 5 
sec 

Very easy. Keras 
implementation incl. 
transfer learning 
available. 

 
 

RetinaNet 

FAIR 
(Facebook 
AI Research 
Group) 

 
 

Open Source 

 
 

2018 

 
 

Keras, 
PyTorch 

 
9 sec/not 
available 

Very easy. Keras 
implementation 
available. GPU 
implementation not 
available. 

      Very easy. Keras 
 

Mask R-
CNN 

 
Microsoft 

 
Open Source 

 
2017 

 
Keras, 
PyTorch 

14 sec/not 
available 

implementation 
available. GPU 
implementation not 
available. 

 
Faster R- 
CNN 

FAIR 
(Facebook 
AI Research 
Group) 

 
 

Open Source 

 
 

2015 

 
 

Keras, 
PyTorch 

 
15 sec/not 
available 

Very easy. Keras 
implementation 
available. GPU 
implementation not 
available. 

 

 

Figure 25. YOLOv3 Detections on CTIL and Real-Life Imagery  
 

 
Figure 26. Mask R-CNN Detections on CTIL and Real-Life Imagery 



39 

To further evaluate performance of YOLOv3 over RetinaNet, a precision/recall curve was 
generated on their detection results using CTIL imagery. For neural networks, precision and 
recall15 are two closely related, but slightly different, quantitative metrics that determine (in 
general terms) the accuracy and precision of the network on a given evaluation dataset. This is 
somewhat analogous to accuracy and precision calculations for making measurements. Precision 
is a measure of how likely every prediction is to be correct. Recall is a measure of how many of 
the ground-truth objects to be detected are detected by the neural network. Although it can be 
easy to mix up precision and recall, it is helpful to evaluate how both are affected as the 
probability threshold of the network is adjusted. Every detection that a network generates has an 
associated class probability value directly indicating how confident the network is in the 
prediction. 
The probability threshold of a neural network is the confidence value below which a prediction is 
eliminated. It can be easily reasoned that a high confidence threshold would mean that a network 
is more selective in filtering out detections, thus eliminating low confidence detections that might 
have been right in favor of detections that are more certain to be right. This means that precision 
increases while recall decreases as confidence threshold increases. Conversely, a low confidence 
value indicates being less selective in filtering detections, thus accepting lower confidence 
detections that might not be correct but correctly detecting more objects overall. This means that 
precision decreases and recall increases as confidence threshold decreases. 
Figure 27 shows that the precision/recall curves for YOLOv3 and RetinaNet are very similar, so 
expected performance will be similar. In terms of real time operation, YOLOv3 is the obvious, 
optimal choice. Therefore, based on these criteria and the fact that Keras implementations (both 
the network and transfer learning) are readily available, the YOLOv3 pre-trained network was 
selected for ExP-L. 

 
Figure 27. Precision vs. Recall for YOLOv3 and RetinaNet 

 
15 Peters, J., and Frittelli, J. Positive Train Control (PTC): Overview and Policy Issues. Congressional Research 
Service Report for Congress. 30 July 2012. 



40 

 
Figure 28. Precision vs. Recall Diagram. Detections would be selected based on the chosen 

confidence value 

Open Source Implementation of YOLOv3 
The rapidly growing field of deep learning has generated substantial interest from various 
technical communities. The result is that newer algorithms and technologies are quickly 
replicated and open-sourced across various programming domains. With YOLO and its variants, 
a similar trend has occurred. For ExP-L, a trade study was conducted to determine the best open 
source version of YOLOv3. The requirements for the selected version were that it 1) was 
implemented using the Keras framework, 2) supports transfer learning techniques, and 3) is well 
supported and documented. 
The open source implementation Keras-YOLOv3 was found to meet the above requirements. 
Most importantly, it was found that the transfer learning implementation was straightforward and 
well documented. Some various experiments with transfer learning and data augmentation were 
carried out relatively easily and helped facilitate the decision to use this implementation. 
Currently, a copy of Keras-YOLOv3 is being used for ExP-L on Aurora’s internal Git repository. 
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Appendix B. 
List of CTIL Web Service Variables 
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Appendix C. 
Hardware Trade Study 

Two image capture methods were originally proposed for ExP-L. The first used cameras and the 
second extracted the imagery directly from the CTIL. The first method was quickly ruled out 
because it was determined that captured imagery would contain significant screen artifacts. For 
example, the refresh rate of the screen would introduce lighting inconsistencies and improper 
sampling effects in the imagery, and screen pixilation would introduce errors at higher 
magnifications. Finally, cameras would need to be placed inside the CTIL cab to capture the 
outdoor environment. This is not realistic, because in practice, external perception cameras 
would be placed on the exterior of the locomotive facing forward toward the track. Cameras in 
the CTIL would only produce heavily cropped images. 
To work effectively with the CTIL, it was determined that imagery must be captured directly 
from the CTIL simulation. An initial investigation determined that an HDMI splitter could be 
included as part of the A/V equipment of the CTIL, which meant that the simulation input to the 
screens could be bypassed for potential image capture. It was determined that this could be 
accomplished using an image capture or screen capture card. A trade study of available image 
capture cards was conducted, as shown in Figure 29. The image capture card must be able to 
capture 1080p at minimum at 30 fps so that the computer vision results can be presented to the 
user with minimal latency (i.e., around 40 ms). Furthermore, a capture card should be selected 
that allows for fast setup and testing. Several options from plug-and-play to board level cards 
were reviewed. Ultimately, the team selected the Inogeni capture card, which is a plug-and-play 
device that has the highest resolution/frame rate combination. Furthermore, in terms of software 
setup, the Inogeni card is recognized by OpenCV as a USB capture device, which makes setup 
and deployment easy and customizable. 

 
Figure 29. Image Capture Card Trade Study 
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Figure 30. Inogeni HDMI to USB 3.0 Capture Card Selected for Use with EXP-L 

The ExP-L system is intended to be a real-time system that uses state-of-the-art deep learning 
algorithms. Training and deployment of deep learning algorithms typically requires a high-
performance CPU or GPU. To achieve this performance, ExP-L requires higher-end CPU/GPU 
processing with at least 8 GB of RAM each for the GPU and CPU. The CPU should be at least 
an Intel i7 with a GPU that supports the chosen DNN. This selection criteria will allow for 
potential future tradeoffs between algorithm deployment on the CPU or GPU, depending on the 
needs of the final ExP-L system. 
Although most data will be stored offline on a server or through a service such as Amazon Web 
Services (AWS), local data storage will be important for data collection during test events. To 
determine the amount of data storage required, the following calculation can be completed using 
the specs on the Inogeni hardware: 

Image Data Rate = 1920 x 1080 x 8 bits/(8 bits/1 byte) x 60 frames/sec. = 124 MB/sec 
Using the chosen hardware, ExP-L has the potential to capture frames at 124 MB/sec. In 30 
minutes, this will be 225,000 MB (225 GB) of data. Thirty minutes of imagery from the CTIL 
comprises approximately 216,000 images, which is more than enough for training purposes. 
Therefore, local data storage of at least 250 GB is required. 
Finally, there is a tradeoff between laptops and PCs. Laptops are limited in terms of available 
processing power and can be limited on the number and types of ports available; this mean a 
desktop PC is required. In general, gaming PCs are the best choice for intense graphics and 
image processing, as these high functioning computers come with plenty of ports and data 
storage. Therefore, a trade study of available gaming PCs was performed and a Dell Alienware 
Aurora R7 gaming PC was selected, as shown in Figure 31. 

Processor Intel Core i7 8700K, 4.7 GHz 
Video Card NVIDIA GeForce GTX 1080 w/8 GB GDDR5X 
Memory 16 GB, 2666 MHz, DDR4 up to 64 GB 
Hard Drive 256 GB SSD + 1 TB SATA 
Wireless Qualcomm DW1810 1x1 802.11ac Wi-Fi Wireless LAN 

and Bluetooth 4.1 
Cost $2000 
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Figure 31. Computing Platform Selected for EXP-L 

The Dell Alienware PC has a state-of-the-art CPU/GPU and will be able to support DNN 
training and deployment for all phases. It should also be enough platform for initial data 
collection on locomotives. For longer-term deployment situations, the PC will need to be custom 
built with similar specifications and ruggedized for the locomotive environment. 
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Appendix D. 
Methods of Labeling Data 

Labeling Dataset from the CTIL  
Accurate data labeling is extremely important for training neural networks. For computer vision, 
the label for an image is the bounding box (i.e., subset of the image) that contains the object of 
interest and a class name. The bounding box location is given by a corner pixel location and 
length/width of the bounding box. The label should be something simple and informative; for 
example, the label for a dog in an image would be “dog.”   
However, as the training dataset grows, labeling can become time-consuming. For ExP-L, the 
estimated dataset size is several thousand images, possibly higher. To overcome lengthy labeling 
sessions, three different options were conceived. Ultimately, it was determined that manually 
labeling data was the best option and that it will not be as lengthy a process as originally 
expected.  

Automatic Labeling of Data  
It was originally proposed to label the imagery gathered from the CTIL automatically using the 
locomotive state information and railway map information for the CTIL simulation. Working 
with Corys, it was determined that the CTIL simulation follows the Geographic Information 
System (GIS) format, which is a system for capturing, storing, and displaying data related to 
positions on Earth’s surface. The CTIL simulation stores geometry information using .shp, .dbf, 
and .prj files. Furthermore, there is a web service that broadcasts real-time sim and locomotive 
data over a network connection. Ideally, GIS data and real time information could be used 
to accurately predict trackside information  encountered by the locomotive. This would allow for 
predictions of image content, which could be used to label the image itself.   
The .dbf files contain locations of simulation landmarks (e.g., signals, signs) measured in terms 
of chainage from Aurora, IL. The .dbf file is also human-readable in MS Excel, which means that 
this file could be used as a reference location file for real time operations in the CTIL. Combined 
with the real time chainage value from the web service, the .dbf file can be referenced to make a 
prediction of the landmark to be encountered. However, it was determined that this prediction 
would not be accurate enough for image labeling because the .dbf file does not  indicate the 
ending location of a landmark accurately. In practice, ExP-L could start labeling data, but not 
know when to stop. Ad-hoc methods could be used to determine the stopping point, but this 
would introduce the risk of incorrectly labeled data, which would affect the accuracy of the 
DNN. Finally, there is no accurate way to determine the image bounding box automatically, 
therefore automatically labeling was ruled out as a feasible option.  
Amazon Mechanical Turk and Manual Data Labeling  
Amazon Mechanical Turk (MTurk) is a standard option for data labeling. MTurk is a pay service 
where data is posted to Amazon and a collection of remote workers manually label the data. 
Typically, these workers are paid several cents per image to ensure quality image labeling of 
data. Additionally, using MTurk would enable the research team to use AWS for data storage and 
potentially processing power, as well. As an example, labeling 4,000 images would cost around 
$200 – $300, plus storage fees. An application that would allow the workers to label the data 
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would also need to be developed, which amounts to about 2 weeks of engineering time and 
testing.  
Finally, experiments were performed to understand how to manually label data using internal 
labeling software. The initial dataset gathered from the CTIL took several hours to label, which 
is approximately 500-1,000 images/hour depending on the experience of the labeler. In total, this 
means that it would take 16 hours (2 engineers x 8 hours a day x 1 day) to label all the CTIL data 
gathered, assuming the data set is 10,000 images. This estimate is reasonable, so the team 
decided that going forward all data will be labeled manually.
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Appendix E. 
Tesseract and Optical Character Recognition 

Interpreting trackside signs is a critical component for a system like ExP-L. Correctly correlating 
sign content with the current state of the locomotive will enable ExP-L to understand whether the 
operator has the proper track authority. From a computer vision standpoint, this is a two-stage 
problem, consisting of object detection followed by text interpretation. This can be accomplished 
using YOLOv3 and optical character recognition (OCR) techniques. OCR has been in use for 
decades to convert hand-written or copied texts into computer-readable formats using basic 
computer vision techniques. One type of OCR is a pattern recognition-based system that 
decomposes text information into lines, intersections, and loops. Feature extraction can then be 
performed to compare image features with stored features and choose the closest match. 
A second type of OCR, Google’s Tesseract OCR library, was used in this analysis. The Tesseract 
OCR library uses a more modern type of feature-matching. It uses a long short-term memory 
(LSTM) RNN that has been pre- trained on over 100 languages and different font types to 
recognize lines and shapes quickly, and then accurately match those shapes to known characters. 
These LSTMs excel in learning long term dependencies that perform very well when applied to 
classifying and making predictions over arbitrary time intervals and text. 

Tesseract and Image Processing 
While the goal of OCR might appear straightforward, there are several aspects that make OCR 
challenging. Specifically, there are certain considerations that must be made when working with 
OCR libraries. Tesseract is currently the state-of-the-art in OCR detection, but the algorithm 
does not work well with too much background clutter. In general, the location of the text must be 
pre-defined for Tesseract to be successful. For ExP-L, the input to the Tesseract OCR algorithm 
will be a cropped image containing the milepost or sign only. The location of the sign in the 
image can be provided by the YOLOv3 network to the Tesseract algorithm or through other 
image processing methods. If required, further refinement can be accomplished through image 
preprocessing and other computer vision techniques to narrow the ROI to sections of text only. 
Most of the experiments for sign detection were heavily focused on generating the best image for 
the Tesseract algorithm. These experiments are discussed below. 
The sign reading module (SRM) (Figure 32) starts with an input image into YOLOv3, which 
then outputs a bounding box location of a detected sign within the image.  

Figure 32. Sign Reading Module (SRM) 
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OCR detection begins with passing the image and the bounding box information to the SRM, 
which crops down the image to the bounding box size and adds some extra padding around the 
detected sign. 
Figure 33 shows a raw output image from YOLOv3, cropped based on the bounding box 
information, and the final resized image used by the SRM. 
The top row of Figure 33 are images from the YOLOv3 milepost detection output with added 
padding. The lower row of images shows the cropped output with annotated OCR results. The 
distances and resolution of the milepost images play a large role in the success of performing 
OCR and text detection on these images. 

Figure 33. Sample Tesseract Sign Reading Results 
In summary, OCR methods make it possible to perform text detection and recognition of 
milepost markers within the CTIL imagery. Mileposts detected via the YOLOv3 neural network, 
and their respective bounding boxes are output. Once the text image is localized, it is then passed 
to Tesseract to detect and interpret the text within the bounding box. Over a small sample dataset 
of 50 images, this method proved to have an accuracy of 75 percent when padding and cropping 
images during preprocessing and removing images whose overall resolution is too low to detect 
text. Due to the low renderings of distance objects and overall fidelity in the CTIL, this OCR 
pipeline could have significant forward-looking capabilities if the overall quality of the input 
imagery could be improved. Accuracy of this method could be improved with higher resolution 
images and imagery obtained closer to the milepost. 
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Appendix F. 
Railroad Track Detection 

Estimating the position of the railroad track is important for proper operation of the locomotive. 
As in autonomous driving, systems such as ExP-L should be able to detect railroad track in near-
real-time to extract track location and current track occupancy and determine whether the 
locomotive is traveling safely. Two approaches to feature extraction were explored – a DNN 
approach and an approach using conventional computer vision techniques. Both were 
investigated to show feasibility, but future work will require more investigation into outlier 
removal and possible Kalman filtering to increase the recall of railroad tracking to 80 percent or 
higher. The proposed railroad track detection algorithm is shown in Figure 34. 

Figure 34. Rail Position Estimation Approach 
Performance requirements such as precision and recall will be used to measure object detection 
accuracy, but a true positive (TP) will be defined as: 

where PGT is the ground truth position and PLE is the Lane estimate position. If the difference 
between these two values is less than the threshold, then the detection will be considered a TP. 
This approach to the TP metric is more useful than simply counting the number of TPs and 
comparing to the ground truth, because it also captures the positional accuracy of the detection. 
The DNN approach for feature extraction was to label sections of the track and train YOLOv3 to 
estimate the position of the track and splits in the track in real time. An example of track split 
detection is shown in Figure 35. Consistent stretches of track and track splits were detected by 
the DNN, and achieved low detection confidence levels and around 50 percent recall values. As 
more training data is gathered from the CTIL, the DNN will become better at detecting these 
track features with higher detection confidence and recall levels. 
A second approach taken for feature extraction was a non-DNN technique similar to methods 
used for autonomous driving. In most autonomous driving cases, the successful approach has 
been to capture the image, correct for perspective, threshold the image, and use simple 
techniques such as blob or Hough lines to extract lanes or lane markers. This study’s approach 
was similar, except that railroad tracks were being detected instead of car lanes. As shown in 
Figure 35, a conventional approach was demonstrated using CTIL data. First, the image was 
captured and then warped to enable a top down perspective of the track itself. Strong levels of 
thresholding and filtering were used to remove the background and segment out the track just in 
front of the locomotive. This approach works well except for regions where there are multiple 
tracks crossing. For example, this approach has a high confusion rate around track splits. For 
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these types of events, the DNN approach performs very well. A DNN could also be used to 
detect the track at specific intervals and then conventional techniques used to investigate the state 
of the individual rails. Therefore, in general, future work will involve exploring the combination 
of DNN and conventional feature extraction techniques, the implementation of outlier removals, 
and Kalman filtering. 

Figure 35. Top left – raw image; Lower Left – Thresholding and filtered to capture the 
rails only; Lower Right – Hough lines used to detect and model the rail; Red line 

represents spline generated to track the rail position over time
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Appendix G. 
Human Machine Interface to Support Engineer Situational Awareness 

Introduction 
The capabilities of the current ExP‐L system developed in the CTIL include detection of the 
following objects and contexts: 

• Vehicles obstructing the current right‐of‐way

• Signals that control the movement authority on the current track.

• Trackside objects that provide location information including milepost markers
and station signs

• Warning flags before speed restrictions

• Railroad crossings and faulty equipment (e.g., gates in the up position)

• The position of track switches to ensure correct alignment
To use the ExP‐L system to support engineer situation awareness, notifications and warnings 
based on ExP‐L recognition will need to be integrated into locomotive operating displays. Most 
modern freight and passenger locomotives use digital display screens to provide primary train 
information for controlling the vehicle (Figure 36), although there are undoubtedly many older 
locomotives still in service outfitted with steam gauges. Two display panels, one of which is the 
primary operating display, are located on a console in front of the engineer and below the main 
windscreen. Additional displays for PTC or other supplemental systems can be displayed in 
different locations, including atop the AAR 105 control stand (Figure 36, left), between the front 
windscreens (Figure 36, right), or to one side or even above the engineer’s windscreen. 

Figure 36. Left: A display for the ACSES positive train control system is mounted between 
the two windscreens; Right: Cab layout for a GE Evolution locomotive: Note the display 

atop the AAR control stand in the middle of the cabin 
The primary driving display (Figure 37, left) provides information about train state used by the 
engineer to control the train, including speed, throttle and brake settings, brake line pressures, 
and engine output. The displays for the secondary locomotive systems also show some of the 
primary information (e.g., speed) and provide additional information related to their function, 
such as the train location and the speed plan for Trip Optimizer (i.e., an automated driving 
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system), the upcoming section of track (Figure 37, center), or train location relative to an 
upcoming speed restriction on the PTC display (e.g., the red cross-hatched area overlaid on the 
moving map in Figure 37, right). 

     
Figure 37. Examples of typical digital locomotive displays. Left: Example of a primary 

driving display. Center: Trip Optimizer display screen (Wabtec); Right: i-ETMS (Wabtec) 
PTC display screen. Note that the secondary system displays (TO and i-ETMS) also show 

primary driving information along with unique system information. 

General Human Factors Considerations 
The main human factors consideration in integrating ExP‐L information into current displays 
would be to ensure that the display modifications do not impose an additional visual workload 
that would interfere with the primary task of controlling the train or secondary task of monitoring 
the environment for potential hazards. The current train operating displays described above are 
already information-dense, so careful consideration of information display is needed. 
Overloading the visual attention system may detract from the engineer’s ability to perform the 
secondary vigilance tasks or even lose situational awareness, which could lead to severe 
consequences further along the track.16 
The level of authority delegated to the ExP‐L system to automatically control the train will also 
shape the interaction model and display of information. If ExP‐L operates as an automatic safety 
overlay system like PTC, then the system may simply display information to help explain 
impending or current system actions. If the engineer is the final authority on controlling the train, 
then more detailed information, such as the nature of a potential track hazard, might need to be 
displayed to enable the engineer to take appropriate action. The salience of ExP‐L information to 
the current train operating situation could be used to determine the level of display. For example, 
confirmatory information, such as identifying a resume flag at the end of a permanent speed 
restriction, might not require any notification if it conforms to the known track configuration. 
However, any conflict between what is identified in the environment by EXP‐L and the known 
trip plan would need to be indicated immediately to the engineer. 
Implementation with Current Displays 
This section considers a few possible implementations of ExP‐L into current freight locomotives 
configured with typical cab operating displays (e.g., Trip Optimizer and i‐ETMS). Researchers 
assumed that ExP‐L will be used as a semi‐autonomous advisory system with no authority to 

 
16 National Transportation Safety Board, "Derailment of Amtrak Passenger Train 188 Philadelphia, 
Pennsylvania, May 12, 2015," National Transportation Safety Board, Washington, DC, Railroad 
Accident Report. PB2016‐103218, May 17, 2016. 
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control the throttle or brakes but with the capability to automatically activate non‐vital train 
systems such as the horn or bell. An auditory alarm should accompany any alerts signaled by the 
EXP‐L system that are obviously different from other systems (e.g., the alerter). Forward-facing 
cameras mounted on the locomotive would capture imagery that can be analyzed by the machine 
vision processing pipeline. Outputs of the recognition system would have to be added to a 
locomotive information bus so that they could be included in the existing cab displays (e.g., i‐
ETMS). These display modifications would have to be made in cooperation with the locomotive 
or third‐party display manufacturers. 
As noted above, the current operating displays have limited space for any additional ExP‐L 
related symbology. Figure 38 shows one example of how ExP‐L output (in this case, 
identification of potential track obstacles) could appear as an alert to the engineer. The red box 
indicates a critical alert showing that ExP‐L has identified trespassers ahead of the train (one or 
more people on the track ahead and to the left of the track). A set of icons could be used to 
differentiate the type of track obstacle (e.g., vehicles or equipment). The color-coding of the 
trespasser icon indicates the proximity of the trespassers to the train track (e.g., red could 
indicate direct interference with the train, while yellow might represent a potential hazard). 
Similarly, the color of the cross‐hatched area represents the distance‐ or time‐to‐contact to the 
trespassers (e.g., red could represent 5 seconds to contact). This display is based on typical 
automotive forward collision avoidance displays which indicate distance to vehicles ahead (see 
Figure 38). Automatic sounding of the horn could occur at the same time as the appearance of 
the alert. An additional warning message could direct the engineer to apply the train brakes to 
reduce the severity of impact. 

 
Figure 38. Example of ExP-L symbology on a typical primary operating display; this 
symbology indicates an obstruction on the tracks (red figure) and another close to the 

tracks on the left side (yellow figure) 
Similarly, ExP‐L identification of signal aspects could be displayed with icons representing the 
identified aspect. With sufficient camera capability, the ExP‐L system could provide a preview 
of the upcoming signal before it can be visually confirmed by the engineer. This could be critical 
if the upcoming signal shows an unexpected restrictive aspect or has failed and does not display 
a signal. Furthermore, the signal could be tracked by the ExP‐L system until it has been passed to 
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ensure that any late signal changes are detected and indicated to the engineer. Figure 39 shows 
one possible symbol to indicate that the signal has changed, or “signal dropped” since it was 
initially identified by the ExP‐L system. The original signal aspect is overlaid with a red “X” 
 to clearly indicate that it is no longer valid and the red arrow indicates a downgrade to a more 
restrictive signal. 

 

Figure 39. Icon representing a signal change that occurred since the signal was identified 
When approaching a switch or crossover, the engineer must visually ascertain that the switch is 
correctly lined for the intended travel path. Automatic identification of switch alignment by ExP‐
L could be indicated by the symbols shown in Figure 40. In this example, the intended travel 
path is to cross over to another main line track. The switch is incorrectly lined to continue along 
the current track as indicated by the red path. Proper alignment could be indicated with a green 
outline showing the correct intended route over the switch. This would require the ExP‐L system 
to be coupled with the trip plan, which can be provided by the PTC system. 

by EXP-L 

 
Figure 40. Icon representing an incorrectly lined switch; the intended travel path is to cross 

over to a new track 

Implementation Using a Separate Augmented Reality Display 
A second implementation would be to create an entirely separate display that overlays ExP‐L 
derived information over a video stream of the forward view from the locomotive. This approach 
would use one of the ExP‐L external camera views to show the forward view, then overlay 
symbology that presents the ExP‐L information seemingly embedded in the external 
environment. This approach is currently available commercially for aviation, as illustrated by the 
screenshot from FlyQ Insight, an iPad/iPhone‐based app developed by Seattle Avionics Software 
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(Figure 41).17 In this platform, the device camera captures the forward view from the airplane 
and then uses the device’s GPS and orientation information in combination with a digital map 
databases to overlay approach and landing information on the augmented view. 

  
Figure 41. Screenshot of the FlyQ Insight app from Seattle Avionics 

For rail operations, a similar head‐down display could be created that showed the video feed 
from the ExP‐L camera capturing the forward view overlaid with symbology indicating the type 
of object detected. This scene augmentation could be implemented without any connection to the 
locomotive data infrastructure, since location information can be obtained through GPS and 
machine vision would be responsible for labelling identified objects from the scene. An example 
of automatic switch alignment indication is shown in Figure 42 (left). While the enhancements 
are very similar to the symbology previously described, this implementation provides better 
clarity in the operating context, especially if there were a series of switches in succession (Figure 
43, right). 
Similar symbology could be used for highlighting obstacles on or near the tracks. Unlike the 
simple icons displayed on the primary driving display, the engineer can now use their own 
perception to better evaluate the situation and consider possible actions. Depending on the 
camera capabilities, ExP‐L could even identify the type of obstacle much earlier than the 
engineer, allowing for a longer window to blow the horn or even slow the train. 
There are a few practical implementation considerations with this approach. First, an additional 
physical display device needs to be placed somewhere in an already-crowded cab. Ideally, it 
would be placed on the forward console below the windshield; this would allow the engineer the 
shortest distance to shift gaze between display and real‐world views. Using a tablet computer as 
a self‐contained augmented reality (AR) display would add another constraint on its placement 
by requiring access to the forward view. Second, the camera on a commercial tablet may not 
have the dynamic range to satisfactorily handle the wide range of possible lighting conditions, 
(i.e., low light/nighttime to rain/snow/mist to extremely bright conditions at dawn or dusk, 
depending on the direction of travel). Dedicated camera systems would have better performance 
capabilities for this application. Third, it is not clear that commercial tablet systems would have 
sufficient computing power to perform the image processing and graphics rendering at real‐time 
rates. 

 
17 Information can be found at https://www.seattleavionics.com/FlyQInSight.aspx 

http://www.seattleavionics.com/FlyQInSight.aspx
http://www.seattleavionics.com/FlyQInSight.aspx
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Figure 42. Left: AR overlays indicating that a switch is correctly lined fort the planned 

path; Right: AR overlays could be especially helpful through complicated switches in yards 

  
The color of the cross-hatching again conveys the distance- or time-to-contact with the obstacle. Left: For closer 

obstacles, the salience of different obstacles is shown through the coloring of the bounding boxes. The vehicle on the 
right side is exiting the grade crossing, so it is less salient than vehicles in or approaching the crossing. Right: For 

distant obstacles, ExP-L could potentially determine the type of obstacle well before the engineer could make a 
visual confirmation, thus providing a longer window to take appropriate action. 

Figure 43. AR symbology identifying obstacles 

Integration with the Current FRA Sponsored AR-HUD Project 
The tablet‐based approach would display the EXP‐L information on a full, windscreen‐sized AR‐
HUD. Integrating the ExP‐L capabilities into the current AR‐HUD project would allow 
researchers to investigate several additional questions related to the use of AR in rail operations 
including 1) determining the appropriate display methods to inform the engineer of infrequent 
but potentially important information and to provide guidance on appropriate action, 2) 
Determining how the addition of ExP‐L information affects the vigilance and situation awareness 
of the locomotive crew over the course of a long trip, and 3) determining how the crew’s trust in 
ExP‐L information changes with repeated use of the system. These questions could be 
incorporated into the planned human‐in‐the‐loop studies with a prototype AR‐HUD. 
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Abbreviations and Acronyms 

ACRONYM DEFINITION 

AM Alerted Module 

CIM CTIL Interface Module 

CNN Convolutional Neural Network 

COCO Microsoft Common Objects in Context dataset 

COTS Commercial, Off-The-Shelf 

CPU Central Processing Unit 

CTIL Cab Technology Integration Laboratory 

DM SSO CNN Detection Module 

DNN Deep Neural Network 

ExP-L External Perception for Locomotives 

FRA Federal Railroad Administration 

GPU Graphics Processing Unit 

HDMI High-Definition Multimedia Interface 

HMI Human-Machine Interface 

HSV Hue, Saturation, Value 

HUD Head-Up Display 

IM Interpretation Module 

mAP Mean Average Precision 

OCR Optical Character Recognition 

RGB Red, Green, Blue 

ROI Region of Interest 

SSO Signs, Signals, and Objects 

YOLOv3 Redmon’s You Only Look Once deep learning architecture 
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